Na matemática, determinante é uma função matricial que associa a cada matriz quadrada um escalar; ela transforma essa matriz em um número real.1 Esta função permite saber se a matriz tem ou não inversa, pois as que não têm são precisamente aquelas cujo determinante é igual a 0.
O determinante de uma Matriz é dado pelo valor numérico resultante da subtração entre o somatório do produto dos termos da diagonal principal e do somatório do produto dos termos da diagonal secundária. Nas matrizes quadradas de ordem 3x3 esses cálculos podem ser efetuados repetindo-se a 1ª e a 2ª coluna, aplicando em seguida a regra de Sarrus. Lembrando que uma matriz é quadrada quando o número de linhas é igual ao número de colunas.
nas matrizes de ordem 2 x 2, calculamos o determinante de forma prática, multiplicando os elementos de cada diagonal e realizando a subtração do produto da diagonal principal do produto da diagonal secundária. Nas matrizes de ordem 3 x 3 utilizamos a regra de Sarrus descrita anteriormente.
Demonstração geral da Regra de Sarrus :
Nenhum comentário:
Postar um comentário